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Exercise 15.B.1

Consider an Edgeworth Box economy in which two consumers have locally nonsatiated pref-

erences. Let x
`i

(p) be consumer i’s demand for good ` at prices p = (p1, p2).

(a) Show that p1

 
X

i

x1i(p)� !̄1

!
+ p2

 
X

i

x2i(p)� !̄2

!
= 0 8p

The competitive budget set B
i

(p) = {x 2 R2
+|p · x  p · !

i

} in vector form for consumers i = 1, 2 is given

by:

 
p1
p2

!
·
⇣
x1i x2i

⌘


 
p1
p2

!
·
⇣
!1i !2i

⌘

p1 (x1i � !1i) + p2 (x2i � !2i)  0

Recall that the (Walrasian) demand function x
i

(p, p · !
i

) must satisfy Walras’s Law. That is,

p1 (x1i � !1i) + p2 (x2i � !2i) = 0

Proof. 1 : Suppose not, 9x
i

2 B
i

(p)|p · x
i

<p · !i (¬B). Then, by LNS of ⌫ 9x0
i

2 B
i

(p) with p · x0
i

< p · !
such that x0

i

�
i

x
i

. However, this contradicts the optimality of x
i

(¬A). Thus, x
i

(p) cannot be the demand

at p when p · x
i

< p · !i.

Having established that p1 (x1i � !1i) + p2 (x2i � !2i) = 0 8i, we now sum over i:

X

i

p1 (x1i � !1i) + p2 (x2i � !2i) = 0

p1

" 
X

i

x1i

!
� !1

#
+ p2

" 
X

i

x2i

!
� !2

#
= 0

1
The logical statement, A ) B we are proving is Walrasian demand ) p · xi = p · !i. This is equivalent to proving that

‘not A’ implies ‘not B’ i.e. ¬B ) ¬A
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(b) Argue that if the market for good 1 clears at prices p? � 0, then so does the market for good 2; hence

p? is a Walrasian equilibrium price vector.

Beginning with market-clearing for good 1. This implies

x11 + x12 = !11 + !12 
X

i

x1i

!
� !1 = 0

Substituting into our result from (a):

p1

" 
X

i

x1i

!
� !1

#
+ p2

" 
X

i

x2i

!
� !2

#
= 0

p2

" 
X

i

x2i

!
� !2

#
= 0

And since p2 > 0, we get

" 
X

i

x2i

!
� !2

#
= 0 which is the market-clearing condition for good 2.

Exercise 15.B.2

Consider and Edgeworth box economy in which the consumers have the Cobb-Douglas util-

ity functions u1 (x11, x21) = x↵

11x
1�↵

21 and u2 (x12, x22) = x�

12x
1��

22 . Consumer i’s endowments are

(!1i,!2i) � 0. Solve for the equilibrium price ratio and allocation. How do these change with

a di↵erential change in !11?

(I) Compute o↵er curves for each consumer, OC
i

(p) = (x?

1i, x
?

2i)

Agent 1 UMP:

max
{x11,x21}

u1(x11, x21) = x↵

11x
1�↵

21

s.t
n

p1x11 + p2x21  p1!11 + p2!21

For simplicity, let R1 = p1!11 + p2!21. Recall that when preferences are convex, the optimal consumption

can computed by equating the marginal rate of substitution with the price ratio:2

@u1/@x11

@u1/@x21

=
p1
p2

) ↵

1� ↵

x21

x11
=

p1
p2

2
Tangency between the budget line and the indi↵erence curve is a necessary and su�cient condition for optimality under

convexity of preferences
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Substituting the budget constraint allows us to isolate x11 as a function of the exogenous parameters

x11 =
p2
p1

↵

1� ↵

✓
R1

p2
� x11

◆

✓
1 +

↵

1� ↵

◆
x11 =

↵R1

(1� ↵)p1

Simplifying terms, we arrive at the Walrasian demand of consumer 1 for good 1, x?

11. Substituting this

result into the budget constraint gives us x?

21. The two demand functions constitute 1’s O↵er curve:

OC1(p) = (x?

11, x
?

21) =

✓
↵R1

p1
,
(1� ↵)R1

p2

◆

The o↵er curve of agent 2 follows naturally given the symmetry of the utility functions3

OC2(p) = (x?

12, x
?

22) =

✓
�R2

p1
,
(1� �)R2

p2

◆

(II) Apply the market clearing condition for good 1:4

x?

11 + x?

22 = !11 + !12

↵R1

p1
+

�R2

p1
= !11 + !12

↵

p1
[p1!11 + p2!21] +

�

p1
[p1!12 + p2!22] = !11 + !12

p?2
p?1

(↵!21 + �!22) = (1� ↵)!11 + (1� �)!12

Thus, our equilibrium price vector is

p?1
p?2

=
↵!21 + �!22

(1� ↵)!11 + (1� �)!12

This price vector should induce market clearing for good 2 (i.e. we can use this as a check that our

calculations were done correctly)

x21(p
?

1, p
?

2) + x22(p
?

1, p
?

2) =
(1� ↵)R1

p?2
+

(1� �)R2

p?2

=
p?

1

p?

2

[(1� ↵)!11 + (1� �)!12] + (1� ↵)!21 + (1� �)!22

=
↵!21 + �!22

(1� ↵)!11 + (1� �)!12
[(1� ↵)!11 + (1� �)!12] + (1� ↵)!21 + (1� �)!22

= ↵!21 + �!22 + (1� ↵)!21 + (1� �)!22

= !21 + !22

3
Note that for agent 2, we have R2 = p1!12 + p2!22

4
Recall: this necessarily implies market clearing for good 2
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Having established the equilibrium price vector, substituting this back into the o↵er curves gives us each

consumer’s demand of each good at equilibrium

x11(p
⇤) = ↵!11 + ↵

p?

2

p?

1

!21

= ↵!11 + ↵

✓
(1� ↵)!11 + (1� �)!12

↵!21 + �!22

◆
!21

=
↵ [↵!21 + �!22] + ↵!21 [(1� ↵)!11 + (1� �)!12]

↵!21 + �!22

=
↵(!11!21 + !21!12) + ↵�(!11!22 � !21!12)

↵!21 + �!22

x21(p
⇤) = (1� ↵)

p⇤
1

p⇤
2

!11 + (1� ↵)!21

= (1� ↵)w11

✓
↵!21 + �!22

(1� ↵)!11 + (1� �)!12

◆
+ (1� ↵)!21

=
(1� ↵)!11 [↵!21 + �!22] + (1� ↵)!21 [(1� ↵)!11 + (1� �)!12]

(1� ↵)!11 + (1� �)!12

=
(1� ↵) (!11!21 + �!11!22) + (1� ↵)(1� �) (!21!12)

(1� ↵)!11 + (1� �)!12

By symmetry of the utility functions, agent 2’s consumption at equilibrium is as follows

x12(p
⇤) =

�(!12!22 + !11!22) + ↵�(!12!21 � !11!22)

↵!21 + �!22

x22(p
⇤) =

(1� �) (!12!22 + ↵!12!21) + (1� ↵)(1� �) (!11!22)

(1� ↵)!11 + (1� �)!12

Taking the first derivative w.r.t !11 of the equilibrium values for price and consumption allows us to

ascertain the e↵ect of a di↵erential change in !11

@p⇤

@!11
=

(↵� 1) (↵!21 + �!22)

[(1� ↵)!11 + (1� �)!12]
2 < 0 since ↵ 2 (0, 1)

@x11(p⇤)

@!11
=

↵!21 + ↵�!22

↵!21 + �!22
> 0

@x21(p⇤)

@!11
=

(1� ↵)(1� �)!12 (↵!21 + �!22)

[(1� ↵)!11 + (1� �)!12]
2 > 0

@x12(p⇤)

@!11
=

(1� ↵)�!22

↵!21 + �!22
> 0

@x22(p⇤)

@!11
= � (1� ↵)(1� �)!12 (↵!12 + �!22)

[(1� ↵)!11 + (1� �)!12]
2 < 0

As consumer 1’s endowment of good 1 increases, we see that the relative price of p1 decreases at equilibrium.

Consumer 1’s demand for both goods increases as a result of his increases wealth. Consumer 2’s demand

for good 1 increases as this good becomes more abundant in the economy and his demand for the other

good decreases.
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Exercise 15.B.6

Compute the equilibria of the following Edgeworth box economy (there is more than one):

u1(x11,x21) =

 
x�2
11 +

✓
12

37

◆3

x�2
21

!� 1
2

, !1 = (1,0)

u2(x12,x22) =

 ✓
12

37

◆3

x�2
12 + x�2

22

!� 1
2

, !2 = (0,1)

Agent 1 UMP:

max
{x11,x21}

u(x11, x21) =

 
x�2
11 +

✓
12

37

◆3

x�2
21

!� 1
2

s.t
n

p1x11 + p2x21  p1!11 + p2!21 = p1

Setting up the Lagrangean

L(x11, x21,�) =

 
x�2
11 +

✓
12

37

◆3

x�2
21

!� 1
2

� �(p1x11 + p2x21 � p1)

To simplify, let A =
12

37
.We then derive the following FOCs:

@x11 : �1

2

�
x�2
11 +A3x�2

21

�� 3
2 (�2x�3

11 )� �p1 = 0 ) � =
1

p1
· =

�
x�2
11 +A3x�2

21

�� 3
2 x�3

11 (I)

@x21 : �1

2

�
x�2
11 +A3x�2

21

�� 3
2 (�2A3x�3

21 )� �p2 = 0 ) � =
1

p2
·
�
x�2
11 +A3x�2

21

�� 3
2 A3x�3

21 (II)

@� : p1x11 + p2x21 = p1 ) x21 =
p1
p2

(1� x11) (III)

Setting (I) = (II) then substituting (III) into the resulting expression

1

p1
x�3
11 =

A3

p2
x�3
21

A

✓
p1
p2

◆ 1
3

x11 = x21 =
p1
p2

� p1
p2

x11

Which, after some computations, gives us agent 1’s o↵er curve:

OC1 = (x?

11, x
?

21) =

 
p1

Ap
1
3
1 p

2
3
2 + p1

,
Ap1

Ap2 + p
2
3
1 p

2
3
2

!
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Using the same reasoning as above for agent 2

OC2 = (x?

12, x
?

22) =

 
Ap2

Ap1 + p
1
3
1 p

2
3
2

,
p2

Ap
2
3
1 p

1
3
2 + p2

!

Applying the good 1 market clearing condition to obtain the equilibrium price ratio

x11 + x12 = w11 + w12 = 1
p1

Ap
1
3
1 p

2
3
2 + p1

+
Ap2

Ap1 + p
1
3
1 p

2
3
2

= 1

To simplify, fix p2 = 1 and let x = p
1
3
1 . Then

x2

A+ x2
+

A

Ax3 + x
=

x2(Ax3 + x) +A(A+ x2)

(A+ x2)(Ax3 + x)
= 1

Ax5 + x3 +A2 +Ax2 = A2x3 +Ax+Ax5 + x3

A2x3 �Ax2 +Ax�A2 = 0

12x3 � 37x2 + 37x� 12 = 0

The above cubic equation can be factorized as follows

(x� 1)(4x� 3)(3x� 4) = 0

Which has 3 roots, x =
�
1, 3

4 ,
4
3

 
. Since p1 = x3, we get three equilibrium price vectors

p?1
p?2

=

(
1,

✓
3

4

◆3

,

✓
4

3

◆3
)

Exercise 15.C.2

Consider the one-consumer, one-producer economy discussed in Section 15.C. Compute the

equilibrium prices, profits, consumptions when the production function is f(z) = z
1
2 , the util-

ity function is u(x1, x2) = ln(x1) + ln(x2), and the endowment of labour is L̄ = 1.

There are several ways to go about solving this problem. Each involves the same steps however, the order

is irrelevant. These are:

1. Consumer optimization: Choose consumption of leisure, x1 and the commodity, x2 that maximizes

utility subject to the budget constraint.

2. Firm optimization: Choose labour use, z that maximizes profits.

3. Market-clearing condition either in the commodity or labour market.
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(I) 2 ! 1 ! 3

Firm:

max
z�0

⇡(p, w) = pz
1
2 � wz

Giving us the following FOC

@⇡

@z
=

1

2
pz�12 � w = 0 ) z =

p2

4w2

Which then gives us the value function

⇡(p, w) = pf(
p2

4w2
)� w

p2

4w2
) ⇡(p, w) =

p2

4w

Consumer5:

max
{x1,x2}

u(x1, x2) = ln(x1) + ln(x2)

s.t
n

px2  w(1� x1) + ⇡(p, w)

The Lagrangean is

L(x1, x2,�) = ln(x1) + ln(x2)� �(px2 � w(1� x1)� ⇡(p, w))

From which we derive the following FOCs

@x1 :
1

x1
� �w = 0

@x2 :
1

x2
� �p = 0

@� : px2 = w(1� x1) + ⇡(p, w) = w � wx1 +
p2

4w

Which after some computations, gives us the consumers o↵er curve

OC1(p, w) = (x1, x2) =

✓
4w2 + p2

8w2
,
4w2 + p2

8wp

◆

Market clearing - Good 2

x2 = f(z)

4w2 + p2

8wp
=

p

2w
) 4w2 = 3p2

5
N.B. The consumer consumes x2 units of the commodity produced by the firm and x1 units of leisure. As a result, he

supplies

¯

L�x1 of labour hours to the firm, which uses labour as the sole input in the production of x2. Moreover, we assume

that the consumer is the owner of the firm and thus, receives the firm’s entire profit. This, along with the wage he is paid for

supplying

¯

L� x1 units of labour, comprises his wealth which he can use to purchase x2 at market price, p
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As before, market clearing in the goods market necessarily implies market clearing in the labour market.

We can show this by using the above price-wage ratio,
w

p
=
q

3
4 the consumers leisure choice, x1 and the

producers optimal production,z to prove that z = 1� x1

RHS = 1� x1 =
4w2 � p2

8w2
=

3p2 � p2

8w2
=

p2

4w2
= z = LHS

Having established the equilibrium price ratio, we can substitute into our expressions for z, x1, x2 to obtain

(z,⇡, x1, x2) =

✓
1

3
,
2

3
,
1p
3

◆

Given that w and p are not independent (recall: 4w2 = 3p2), we need to fix one in order to determine

the other and compute the profits at equilibrium. Letting p⇤ = 1, we get the following values for w⇤ and

⇡(1, w⇤):

(p⇤, w⇤,⇡(p⇤, w⇤)) =

 
1,

p
3

2
,

1

2
p
3

!

(II) 3 ! 1 ! 2

Another way to go about solving the problem is to substitute the market clearing conditions (x⇤
2 = f(z⇤), x⇤

1 = 1� z⇤)

directly into one of the agents’ maximisation programmes:

max
z�0

u(x1, x2) = u(1� z, z
1
2 ) = ln(1� z) + ln(z

1
2 )

Di↵erentiating w.r.t z gives us the following optimality conditions

@u

@z
=

1

z � 1
+

1

2z
= 0 ) z⇤ =

1

3

Which then gives us

x⇤
2 = f(z⇤) =

✓
1

3

◆ 1
2

=
1p
3

x⇤
1 = 1� z⇤ =

2

3

Profit maximisation for the firm then allows us to compute the remaining parameters.
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Exercise 16.C.2

Suppose that the preference relation ⌫i is locally nonsatiated and x

?
i is maximal for ⌫i in

set {xi 2 Xi : p · xi  wi}. Prove that the following property holds: “If xi ⌫i x
?
i then p · xi � wi.”

This property is required in order to establish the conditions for Pareto-e�cient allocations in the First-

Welfare Theorem. Given an economy ({Xi,⌫i}i, {Yj}j , !̄), a price equilibrium with transfers 1 must satisfy

a number of conditions, one of which is that the equilibrium allocation (x?, y?) must be preference and

profit maximizing for consumers and firms respectively. The former implies that if there is an allocation

that is strictly preferred to the equilibrium allocation for any i, then that allocation should lie outside i’s

budget set. That is,

If 9xi 2 Xi|xi �i x
?
i ) p · xi > wi

Given the above statement for strict preference relations, we are asked to establish a similar property for

the weak preference relation. Using a contradiction argument2 along with the LNS property, the proof is

as follows

Proof. Suppose a contrario that, 9x0
i 2 Xi : x0

i ⌫i x
?
i and p · xi < wi

By LNS: 9x00
i 2 Xi and ✏ > 0 such that kx00

i � x0
ik < ✏, x00

i �i x
0
i and p · x00

i < wi

By Transitivity of ⌫i: x00
i �i x

0
i ⌫i x

?
i ) x00

i �i x
?
i

Given that x00
i �i x

?
i and p · x00

i < wi, it is apparent that x?
i is no longer the maximiser in the budget set.

Thus, the initial optimality of x?
i is violated. If x?

i is the maximiser, then it follows that p · xi � wi

1
That is, we assume a social planner who can carry out lump sum redistributions of wealth amongst the agents under the

condition that

X

i

wi = p!̄ + p
X

j

y?j

2
Setting up the question as a logical statement of type A ) B: If xi ⌫i x

?
i ) p · xi � wi
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Exercise 16.C.3

In this exercise you are asked to establish the first welfare theorem under a set of assumptions

compatible with satiation. Suppose that every Xi is nonempty and convex and that every

⌫i is strictly convex (i.e. if x

0
i ⌫i xi and x

0
i 6= xi then ↵x0

i + (1� ↵)xi �i xi whenever 0 < ↵ < 1).

Prove the following:

(a) Every i can have at most one satiation point and preferences are locally nonsatiated at any consump-

tion bundle di↵erent from the single global satiation point.

Definition: A satiation point is a quantity of consumption where any further changes result in a decrease in

the well-being of the consumer. Moreover, global satiation implies a maximal level of utility in the absence

of any budget constraint. Unlike local nonsatiation, which implies that within a neigbourhood of any

allocation, a strictly preferred allocation can be found, global satiation implies that there exists a point (or

set of points) for which the consumer does not wish to change his consumption plan, regardless of what

alternative bundles are proposed.

We start with the first assertion which, mathematically, states that

9!yi 2 Xi : yi �i xi8xi 2 Xi

To prove that more than one satiation points is incompatible with the specifications of the consumption

set and preferences (Xi nonempty, convex and ⌫i strictly convex), we construct a proof stating that an

economy with 2 GSPs cannot exist under the properties of (Xi,⌫i) given above.

Proof. Suppose there are 2 GSPs. That is, 9xi, x
0
i 2 Xi : xi ⇠ x0

i and xi 6= x0
i. Given the mathematical

definition of GSPs given above, we must have that xi �i yi and x0
i �i yi 8yi 2 Xi.

By strict convexity of preferences: x00
i = ↵xi + (1� ↵)x0

i �i xi ⇠ x0
i8↵ 2 (0, 1)

Using this assumption, we have established that the any allocation on the line segment connecting xi and

x0
i is strictly preferred to the original allocations. This imposes a degree of curvature to the indi↵erence

map since the set of all possiblex00
i (determined by the value of ↵ must lie in the strict upper contour set

of the indi↵erence curve linking xi and x0
i.
3

Convexity of Xi: Recall that a set, A in Euclidean space is convex if the point ↵x + (1 � ↵)x0 2 A

whenever x, x0 2 A and ↵ 2 [0, 1]. Given the convexity of the set, x00
i = ↵xi + (1� ↵)x0

i 2 Xi|xi, x
0
i 2 A

Thus, we have established two facts; 9x00
i 2 Xi : x00

i �i xi, x
0
i and x

00

i 2 Xi. As a result, xi and x0
i cannot

be GSPs as we are able to locate an allocation within the consumption set that is strictly preferred by the

consumer.

3
see MWG pp. 44-45 for a discussion of convex preferences
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For the second assertion, we show that preferences are locally nonsatiated for any allocation di↵erent from

the unique GSP. Given that x?
i is the GSP, taking any xi 6= x?

i and xi 2 Xi, we must have that x?
i ⌫i xi.

Moreover, since xi is not the GSP, 9x0
i 2 Xi : x0

i ⌫i xi.

Since xi, x
0
i 2 Xi, strict convexity of ⌫i tells us that x00

i = ↵xi + (1� ↵)x0
i �i xi for any ↵ 2 (0, 1). Thus,

we have the following preference ordering: x00
i �i x0

i ⌫i xi which by transitivity, implies that x00
i �i xi.

Finally, given that x00
i is defined for a continuum of values, we can state that kx00

i � xik  ✏, 8✏ > 0. This

is precisely the definition of local nonsatiation.

(b) Any price equilibrium with transfers is a Pareto optimum ( = the first welfare theorem)

Using assertions made in (a), we analyze first the case where x?
i is not a GSP followed by the case where

it is a GSP.

(i) If x?
i is not a GSP, we know from the second assertion of (a) that preferences are locally nonsatiated.

Furthermore, we proved in Ex. 16.C.2, that under LNS, if 9xi ⌫i x?
i then p · xi � wi where x?

i is i’s

consumption at equilibrium.

We prove this by contradiction. Suppose, a contrario that x? is not a Pareto optimum. Using the statement

above, this implies the following:

9(x, y) 2 X1 ⇥ . . .⇥XI ⇥ Y1 ⇥ . . .⇥ YJ :

(
xi � x?

i 8i ) p · xi � wi

xi > x?
i for some i ) p · xi > wi

Summing over all the i’s, the RHS of the above assertion implies that
X

i

p · xi >
X

i

wi. Recall that the

total final wealth in the economy must be equal to the sum of the market value of the endowments and

the market value of equilibrium production. This gives rise to the following inequality

X

i

p · xi >
X

i

wi = p · w̄ +
X

j

p · y?j � p · w̄ +
X

j

p · yj

Where the last inequality follows from the the fact that the equilibrium production y?j is profit-maximising

in Yj . Taking the two ends of the above chain of inequalities and cancelling the price terms, we get thatX

i

xi >
X

i

wi+
X

j

wj . This applies to the Pareto-dominating allocation (x, y). Obviously, this allocation

violates the feasibility constraint and thus, cannot be a price equilibrium with transfers.

(ii) If x?
i is a GSP, we know that this point must be unique by the first assertion of part (a). Moreover,

since the GSP corresponds to the maximum level of satisfaction attainable by the consumers, any deviation

from this point would render them worse o↵. Hence, if x?
i is a GSP, then there cannot exist an alternative

allocation (x,y) that Pareto-dominates it. Thus, x?
i is Pareto optimum.
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Exercise 16.E.2

Show that the utility possibility set U of an economy with convex production and consump-

tion sets and with concave utility functions is convex.

Utility possibility set: Recall that a utility function maps a vector into the set of positive real numbers.

That is, u : RL ! R+. The utility possibility set, defined as the utility levels an economy can achieve

for any feasible allocation, is constructed by taking the image of this mapping and all vectors less than

or equal to the image. As a result, the UPS for any feasible allocation (x,y), is such that ui  ui(xi). A

graphical interpretation of the UPS for an Edgeworth economy is provided in fig. 1

u1

u2

U
UPF: Set of socially 
efficient utility pairs

u2
''

u2
'

u1

Figure 1: Edgeworth economy in utility space

Where the coordinate defined by (u1, u
00

2 ) lies on the utility possibility frontier and thus, by definition, is

Pareto e�cient. By contrast, at (u1, u
0

2), given agent 1’s action agent 2 can improve his utility without

decreasing that of agent 1. Thus, it is not Pareto e�cient.

To prove that U is a convex set given the information in the problem statement, let us define two alloca-

tions , x, x
0 2 X whose respective utility functions are in the economy’s UPS.4 That is, ui  ui(xi) and

u
0

i  ui(x
0

i) 8i with u, u
0 2 U . By convexity of Xi, the convex combination of any two elements of Xi must

be in Xi: x
00
= ↵x+ (1� ↵)x

00
and x

00 2 X. 8↵ 2 [0, 1]

In order to prove convexity of U, we have to show that for u
00
= ↵u+ (1� ↵)u

0
, u

00 2 U 8↵ 2 [0, 1]. This

amounts to showing that the condition for inclusion in U is satisfied. That is, u
00

i  ui(x
00

i ) To do this, we

set up the following system of inequalities

u”
i = �u+ (1� �)u

0
 �ui(xi) + (1� �)ui(x

0

i)  ui(↵xi + (1� ↵)x
0

i) = ui(x
”
i )

Where the first inequality follows from the fact that u, u
0 2 U by definition thereby allowing us to use the

inequalities defining the UPS. The second follows from concavity of the utility function which says that

any point on the line segment connecting x and x
0
will always be less than or equal to the utility associated

to the convex combination of those points.

The above system of inequalities simplifies to u”
i  ui(x”

i ) which implies that u” 2 U . This concludes the

proof.

4
we ignore the production side of the economy for which the following intuitions are unchanged
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Exercise 17.D.1

Consider an exchange economy with two commodities and two consumers. Both consumers

have homothetic preferences of the constant elasticity variety. Moreover, the elasticity of

substitution is the same for both consumers and is small (i.e., goods are close to perfect

complements).

u1(x11,x21) = (2x⇢
11 + x

⇢
21)

1
⇢ and u2(x12,x22) = (x⇢

12 + 2x

⇢
22)

1
⇢

and ⇢ = �4. The endowments are !1 = (1, 0) !2 = (0, 1).

Compute the excess demand function of this economy and verify that there are multiple

equilibria.

Recall that preference orderings are invariant under monotonic transformations. Thus, for any strictly

increasing function f(·) : R ! R, ũ(x) = f(u(x)) represents the same preferences. We apply the following

transformation:

ũ(x) =
1

⇢
u(x)⇢ )

(
ũ1(x11, x21) =

1
⇢ (2x

⇢
11 + x⇢

21)

ũ2(x12, x22) =
1
⇢ (x

⇢
12 + 2x⇢

22)

(I) Computing Walrasian demand functions of each agent

Agent 1 UMP

max
{x11,x21}

ũ1(x11, x21) =
1
⇢ (2x

⇢
11 + x⇢

21)

s.t
n

p1x11 + p2x21  p1!11 + p2!21 = p1

Giving us the following Lagrangean

L(x11, x21,�) =
1

⇢
(2x⇢

11 + x⇢
21)� �(p1x11 + p2x21 � p1)

From which we derive the following FOCs

@x11 : 2x⇢�1
11 � �p1 = 0 ) � =

2

p1
x⇢�1
11 (I)

@x21 : x⇢�1
21 � �p2 = 0 ) � =

1

p2
x⇢�1
21 (II)

@� : p1x11 + p2x21 = p1 ) x21 =
p1
p2

(1� x11) (III)

Setting (I) = (II) then substituting in (III) allows us to compute x?
11(p1, p2)

x11 =

✓
p1
2p2

◆ 1
⇢�1

· x21 =

✓
p1
2p2

◆ 1
⇢�1

· p1
p2

(1� x11) =
p

⇢
⇢�1

1

2
1

⇢�1 p
⇢

⇢�1

2
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x11 ·
 
1 +

p
⇢

⇢�1

1

2
1

⇢�1 p
⇢

⇢�1

2

!
= x11 ·

 
2

1
⇢�1 p

⇢
⇢�1

2 + p
⇢

⇢�1

1

⇠⇠⇠⇠⇠
2

1
⇢�1 p

⇢
⇢�1

2

!
=

p
⇢

⇢�1

1

⇠⇠⇠⇠⇠
2

1
⇢�1 p

⇢
⇢�1

2

x11 =
p

⇢
⇢�1

1

2
1

⇢�1 p
⇢

⇢�1

2 + p
⇢

⇢�1

1

=
p

1
⇢�1

1 p1

p
1

⇢�1

1 p1 + 2
1

⇢�1 p
⇢

⇢�1

2

= ⇢
⇢⇢p
1

⇢�1

1 p1

⇢
⇢⇢p
1

⇢�1

1 (p1 + 2
1

⇢�1 p
1

1�⇢

1 p
1

⇢�1

2 p2)

Grouping like-terms, we arrive at the following demand function

x11 =
p1

p1 +
⇣

p1

2p2

⌘ 1
1�⇢

p2

Using the budget constraint in (III), we compute x?
21(p1, p2)

x21 =
p1
p2

(1� x11) =
p1
p2

0

B@1� p1

p1 +
⇣

p1

2p2

⌘ 1
1�⇢

p2

1

CA =
p1p

1
1�⇢ ( 1

2 )
1

1�⇢ p1
2⇢�1

1

p1 +
⇣

p1

2p2

⌘ 1
1�⇢

p2

x21 =

p1

✓
p1
2p2

◆ 1
1�⇢

p1 +
⇣

p1

2p2

⌘ 1
1�⇢

p2

Following the same procedure for agent 2, we compute his demand for goods 1 and 2

(x12, x22) =

0

BBB@

p2

✓
p2
2p1

◆ 1
1�⇢

p2 +
⇣

p2

2p1

⌘ 1
1�⇢

p1

,
p2

p2 +
⇣

p2

2p1

⌘ 1
1�⇢

p1

1

CCCA

(II) Aggregate excess demand for good 1 = 0 (= Market clearing)

z1(p1, p2) = z11 + z12 = x11 � !11 + x12 � !12 = 0

=
p1

p1 +
⇣

p1

2p2

⌘ 1
1�⇢

p2

� 1 +

p2

✓
p2
2p1

◆ 1
1�⇢

p2 +
⇣

p2

2p1

⌘ 1
1�⇢

p1

= 0

Since z(., .) is homogenous of degree 0, we can treat good 2 as the numéraire leaving p1 as the only

independent variable; z(p1, p2) = z (p1/p2, 1) = z(p1, 1). Using this formulation allows us to simplify the

above to
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z1(p1, 1) =
p1

p1 +
�
p1

2

� 1
1�⇢

+

p2

✓
1

2p1

◆ 1
1�⇢

1 +
⇣

1
2p1

⌘ 1
1�⇢

p1

=
p1

p1 +
�
p1

2

� 1
1�⇢

+
1

p1 + (2p1)
1

1�⇢

= 1

p1

h⇣
p1 + (2p1)

1
1�⇢

⌘i
+ p1 +

�
p1

2

� 1
1�⇢

⇣
p1 +

�
p1

2

� 1
1�⇢

⌘⇣
p1 + (2p1)

1
1�⇢

⌘ = 1

Multiplying out the terms and substituting in ⇢ = �4, we get

◆◆p
2
1 +⇠⇠⇠⇠⇠

p1(2p1)
1/5 + p1 +

✓
1

2

◆1/5

p
1/5
1 = ◆◆p

2
1 +⇠⇠⇠⇠⇠

p1(2p1)
1/5 + p1

⇣p1
2

⌘1/5

+ (2p1)
1/5
⇣p1
2

⌘1/5

p1 +

✓
1

2

◆1/5

p
1/5
1 =

✓
1

2

◆1/5

p
6/5
1 + p

2/5
1

Setting t = p
1/5
1 : t5 +

✓
1

2

◆1/5

t =

✓
1

2

◆1/5

t6 + a

Removal of the lowest common multiplier gives us the following polynomial of order 5:

t5 � 2
1/5t4 + 2

1/5t� 1 = 0

The first root (corresponding to one of the possible equilibrium price vectors) can be found by setting

t = 1. That is, f(1) = (1)5 � 21/5(1)4 + 21/5(1) � 1 = 0. Thus t = 1 ) p1/p2 = 1 is an equilibrium price

vector. The following plot of z(·, 1) vs. p1 can be used to locate the remaining roots:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

p1

z(
p 1,1

)

z1(p1,1) > − z ∀ p

z1(p1,1) → ∞ as p1→ 0

z’(1,1) < 0

Figure 2: Proof of existence of the unique equilibrium

Evidently, there are no other equilibrium price vectors. Indeed, computation of the roots of the quintic

equation in t given above yields 5 solutions, four of which are complex numbers and the remaining one

being the root calculated above.
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Exercise 19.D.4

Consider a three period economy t = 0,1,2, in which at t = 0 the economy splits into two

branches and at t = 1 every branch splits again into two. There are H physical commodities

and consumption can take place at the three dates

(a) Describe the Arrow Debreu equilibrium problem for this economy

In this problem, information is released gradually over time with agents learning more regarding the possible

final state as time unfolds. The information tree is captured in fig 3. In order to be consistent with the

timeless approach of the basic AD setup, it is necessary to restrict the set of feasible consumption plans

based on the information structure.

S
s1

s2

s3

s4

t = 0

t = 1

t = 2

Figure 3: Information tree

At each node of the tree, consumption decisions are determined by the information (regarding the possible

realizations of the final state) up to that point. Moreover, information acquired at a particular node is

retained for all successor nodes. This allows us to define the information structure at each t:

'0 = ({s1, s2, s3, s4})

'1 = ({s1, s2}, {s3, s4})

'2 = ({s1}, {s2}, {s3}, {s4})

At t = 0, no information is available so agents are unable to distinguish between the states. At t = 1,

new information allows agents to determine which node (of the two possible nodes) they are located at.

Furthermore, it allows them to eliminate certain states from the possible realizations. For example, an

agent finding himself at the top node at t = 1 knows that s3 and s4 will not occur however, he is still

unable to distinguish between s1 and s2.
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In order to be consistent with the AD framework, agents should not be able to condition their consumption

on a state they are not sure will be realized. This is known as (Lebesgue)-measurability. Formally, we say

that a vector z 2 RH(T+1)S of consumption plans is measurable with respect to the family of information

partitions ('0, ...,'T ) if, for any lts and lts0, zlts = zlts0 whenever s and s0 belong to the same element of

't. As a result, agents located at the top node at t = 1 could not fix di↵erent consumption plans contingent

on s1 or s2 being realized as he does not have the information to distinguish between them. As a result,

the set of admissible date-event pairs, tE (where consumption plans are formed) are as follows

A =

8
><

>:

a0 = (0, {s1, s2, s3, s4}
a1 = (1, {s1, s2}); (1, {s3, s4})
a2 = (2, {s1}); (2, {s2}); (2, {s3}); (2, {s4})

Arrow Debreu Equilibrium: An allocation defined over the set of admissible date events, tE 2 A
(x?

tE1, ..., x
?
tEI) with xtEi 2 RH

+ and a price vector ptE 2 RH
+ constitute an AD equilibrium if

(i) For every i and tE 2 A, xtEi? is maximal for ⌫i in the budget set {xtEi 2 XtEi :
X

tE2A
ptE · xtEi 

X

tE2A
ptE · !tEi} 8tE 2 A. Intuitively, this implies that the sum of the market values of the contingent

claims made by i at every date-event tE must be less than the total market value of his wealth (Note that

this restriction does not apply to individual date events).

(ii)
X

i

x?
tEi =

X

i

!?
tEi 8tEinA. The equilibrium must be such that markets clear ( all consumers achieve

their desired trades at the going market prices).

(b) Describe the Radner equilibrium problem for this economy. Suppose that at t = 0 and

t = 1 there are contingent markets for the delivery of one unit of the first physical good at

the following date

Recall that in the Radner framework, good 1 is traded on contingent markets (in this case, at t = 0 for

date-event contingent delivery at t = 1 and at t = 1 for delivery at t = 2). Thus, we establish the price

vector, q and trading plan zi for these contingent commodities at date-event tE :

qtE = {qtE(t+ 1, E0)}8tE 2 A

z?i = {z?tEi(t+ 1, E0)}8tE 2 A

Where E0 2 't+1 is the set of successor nodes to E. Thus, {qtE(t + 1, E0)} is the contingent price vector

of one unit of good 1 delivered at t + 1 if event E0 (being one of the possible successor nodes at t + 1) is

revealed and {z?tEi(t+ 1, E0)} is the (date-event) contingent trade deliverable at t+ 1.
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In addition to the good 1 contingent markets, the Radner framework allows for spot markets for all H

goods at all date-events. Thus, we must define a spot market budget constraint for each date-event, taking

into account the set of successor and predecessor nodes

t = 0: Spot markets for all goods, contingent markets for good 1 to be delivered at t = 1

(i)
X

tE02{a1}

q0E(1, E
0) · z0Ei(1, E

0)  0

(ii) p0E · x0Ei +
X

1,E02a1

q0E(1, E
0) · z0Ei(1, E

0)  p0E · !0Ei

Where E
0 2 '1

t = 1: Spot markets at 2 date events, delivery of good 1 from contingent trades at t = 0, contingent markets

for good 1 to be delivered at t = 2

(i)
X

tE02{a2}

q1E(2, E
0) · z1Ei(2, E

0)  0

(ii) p1E · x1Ei +
X

tE02{a2}

q1E(2, E
0) · z1Ei(2, E

0)  p1E!1Ei + p1E · z0,E0,i 81E 2 a1

Where E 2 '1, E
0 2 '2 (the set of possible successor date events to E) and E0 is the known predecessor

to E that occurred at t = 0. Notice that condition ii corresponds to two budget constraints that occur at

each node at t = 1. These two constraints are defined by date-event 1E 2 a1.

t = 2: Spot markets at 4 date events, delivery of good 1 from contingent trades at t = 1, no contingent

markets for future dates (terminal nodes)

(i) p2E · x2Ei  p2E · !2Ei + p1,2Ez1,E1,i(2, E)

(ii) p2E0 · x2E0i  p2E0 · !2E0i + p1,2E0z1,E0
1,i
(2, E0)

Note that at t = 1, the agent is able to distinguish his position on the information tree and thus, has

improved knowledge regarding the final outcome. For this reason, two separate budget constraints are

required depending on the observed realization at t = 1. The first constraint corresponds to the case where

the date event 1E 2 a1 was achieved at t = 1 corresponding to the top node in fig. 3. Thus date-event

tE 2 (2, {1}, {2}) are the possible realizations when tE1 2 (1, {1, 2}) was observed and tE 2 (2, {3}, {4})
are the possible realizations when tE

0

1 2 (1, {3, 4}) was observed. As required, this corresponds to four

budget constraints for each terminal node.

Having defined the Radner budget sets, the rational consumer now chooses his spot and contingent trading

vectors in order to maximise his utility under the constraints given above.
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(c) Argue that the proposition of 19.D.1 remains valid

Recall that one of the main conditions of the Radner equilbrium is that agents have rational expectations.

That is to say, planned (expected) behaviour equals actual behaviour thereby rendering irrelevant, as in

the AD framework. Proving that the AD and Radner prove that the budget sets are equivalent amounts

to proving the following condition: BAD
i ✓ BR

i and BR
i ✓ BAD

i . If both of these statement are true, then

necessarily BAD
i = BR

i . As a result, the proof is carried out in two steps.

Following the proof in MWG, we claim that if there exists a one-to-one transformation between the two

equilibria such that any price vector in the AD equilibrium can be transformed into a price vector in the

Radner equilibrium and vice versa, then the two budget sets are equal. This comprises part (i) of the proof.

Part (ii) of the proof states that the budget sets of the consumers will be the same under the aforemen-

tioned transformation. This amounts to proving the following condition: BAD
i ✓ BR

i and BR
i ✓ BAD

i . If

both of these statement are true, then necessarily BAD
i = BR

i .

As in MWG, we set the spot price vector, p1 of the first good5 at every date-event equal to the contingent

first-good price, q at the same date-event. Analytically, this states that qt,E(t+ 1, E0) = p1,(t+1,E0) where

(t, E) 2 A \ {a2}6, (t+ 1, E0) 2 A and E0 ⇢ E.

The rest of the proof follows naturally from MWG p. 697, generalized to the gradual release of information

scenario (i.e. consumption defined over date-events rather than states).

5
Recall that all H goods are traded on spot markets

6
since contingent markets open at t = 0 and t = 1 only as specified in the problem statement
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Q1. In Rubinstein’s alternating o↵ers bargaining game, if agent 1’s discount factor, �1 = 2
3

and agent 2’s �2 = 4
5 ,

(1) what is the subgame perfect equilibrium agreement they would reach if agent 1 makes

the first o↵er?

Firstly, taking two allocations x2 and x1 such that x2 < x1, consider the following profile of strategies

1. for a:

• Claim x1 whenever b’s last o↵er was strictly smaller than x2

• Accept any o↵er x � x2

2. for b:

• O↵er x2 whenever b’s last claim was strictly greater than x

1

• Accept any claim x  x1

We claim that the above profile constitutes a SPNE under a set of conditions. That is, we assume that

agents do not regret accepting or rejecting an o↵er/claim when it was made. Specifically, we require that

a player’s strategy (which, recall specifies actions at every period, for every possible history up to that,

including those o↵ the equilibrium path)1 is optimal in the game beginning at every node of the tree. This

gives rise to two preference relations yielding the no regret condition

No regret accepting an o↵er ) What the agent gets by accepting an o↵er must be at least as good as what

he would have got rejecting the o↵er and waiting one period to have his own o↵er accepted.

No regret rejecting an o↵er ) What an agent gets by rejecting an o↵er (that is, the countero↵er he makes)

must be at least as good as what he would have got had he accepted the o↵er in the previous round.

1see P.38 Ch.2 in ‘Bargaining and Markets’ by Osborne & Rubinstein
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Putting the two above conditions together implies that an agent is indi↵erent between accepting what is

o↵ered or waiting 1 period to get his own o↵er accepted. Given that agent 1 makes the first move: Claims

x1 for himself according to his strategy. At any t, this implies that he must have rejected a previous o↵er

from agent 2 at t� 1, a decision he must not regret:

�

t

1x1 = �

t�1
1 x2 ) x2 = �1x1

Agent 2, following his strategy accepts A’s claim of x1 at t, leaving him with 1 � x1. No regret implies

that he is indi↵erent between accepting 1� x1 at t and rejecting and having his o↵er accepted at t+ 1:

�

t

2(1� x1) = �

t+1
2 (1� x2) ) 1� x1 = �2(1� x2)

This gives us a system of 2 equations and 2 unknowns which we can solve for x1, x2

1� x1 = �2(1� x2) = �2(1� �1x1)

= �2 � �1�2x1

1� �2 = x1(1� �1�2)

x1 =
1� �2

1� �1�2

Thus, the final allocation if agent 1 speaks first is:

(x1, 1� x1) =

✓
1� �2

1� �1�2
, �2

1� �1

1� �1�2

◆
=

✓
3

7
,

4

7

◆
(1)

(2) And if it is agent 2 who makes the first o↵er?

Agent 2’s strategy is to o↵er x2 and keep 1 � x2 for himself. So, we continue from the above set of

computations

x2 = �1x1 = �1
1� �2

1� �1�2

With the final allocation for 1 and 2 respectively being

(x2, 1� x2) =

✓
�1

1� �2

1� �1�2
,

1� �1

1� �1�2

◆
=

✓
2

7
,

5

7

◆
(2)

(3) is there an agent that receives always more than the other? if yes, why? if no, why?

Agent 2’s share is always greater than agent 1’s, regardless of who speaks first. This occurs since �2 > �2,

implying that agent 2 is more patient and discounts future consumption less than agent 1
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(4) in general, how should relate the agents discount factors �1 and �2 for agent 1 to o↵er

agent 2 a bigger share than his own?

This occurs if the following inequality exists between the allocations in equation (1)

1� x1 > x1

�2
1� �1

1� �1�2
>

1� �2

1� �1�2

2�2 � �1�2 > 1

That is, when

�2 >

1

2� �1
(3)

Q2. In Rubinstein’s alternating o↵ers bargaining game, is the unique subgame perfect equi-

librium outcome continuous with respect to the agents’ discount factors at (�1, �2) = (1,1)?

Determining the continuity of the SPNE with �1 = �2 = � = 1 requires us to analyze the limits of the

outcomes under 3 conditions

1. �1 = �2 = � ! 1

In this case, both agents are infinitely patient. If agent 1 speaks first

x1 =
1� �2

1� �1�2
=

1� �

1� �

2
=

1

1 + �

) lim
�!1

1

1 + �

=
1

2

And if agent 2 speaks first

x2 = �1
1� �2

1� �1�2
=

�

1 + �

) lim
�!1

�

1 + �

=
1

2

Thus, when two agents with the same discount rate become infinitely patient, they split the total in half

thereby implying that x1 = 1� x1 holds. Continuity requires that any sequence of outcomes converges to

this solution.

2. �1 = 1, �2 ! 1

In order to ensure continuity, the limits of this sequence must lie on the same path as the above case.2

x1 : lim
�2!1

1� �2

1� �1�2
= lim

�2!1

�1

�1
= 1

1� x1 : lim
�2!1

�1
1� �2

1� �1�2
= lim

�2!1

�1

�1
= 1

Obviously, 1 6= 1 � 1 and thus this particular limit does not lie on the same path as above. The same

applies for the final case

2Given that the limits involve indeterminate forms, L’Hôpital’s rule is implicitly applied in the computations below
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3. �2 = 1, �1 ! 1

x1 : lim
�1!1

1� �2

1� �1�2
= lim

�2!1

0

�1
= 0

1� x1 : lim
�1!1

�1
1� �2

1� �1�2
= lim

�2!1

0

�1
= 0

Similarly, 0 6= 1 � 1 and thus, preferences defined by (�1, �2) are not continuous as the limits of the

sequence do not converge to the same point.

Q3. Consider a single firm with production function f (with f(0) = 0, f 0
> 0, and f

00
< 0) and

a union deciding what part of time L to supply as labor l for the firm and what part L� l to

de vote to an outside option with reservation real wage w0. Assume that f

0(L) > w0.

If the firm and the union are negotiating whether to implement the Nash bargaining solu-

tion allocation or the Kalai-Smorodinsky Bargaining solution allocation, what would be each

party’s most preferred choice?

Recall that a solution to a bargaining problem involves maximizing a particular function to obtain a point

in, u 2 U , the bargaining set. Before developing these functions, we must set up the bargaining set.

The utilities for both firms and workers (profits and income respectively) when they bargain over wages,

w and labour supply, l and come to an agreement is

Firm Profit: ⇡ = f(l)� wL

Worker income = wl + w0(L� l)

In order to completely define the bargaining set, we also need to define the utilities when agents disagree

i.e. cannot come to an agreement on (w, l)

Firm Profit: ⇡ = f(0)� 0 = 0

Worker income = 0 + w0(L� 0) = w0L

Note that the firm gets 0 profit however, the workers still have their outside option paying at the reservation

wage. Next, we assume that, regardless of the bargaining solution used, the (w,L) agreed on will be

e�cient. This is equivalent to the gradients 5
i

=
�

@

@l

,

@

@w

�0
being colinear. That is

"
@⇡

/@l

@⇡

/@w

#
= �

"
@R

/@l

@R

/@w

#
)

"
f

0(l)� w

�l

#
= �1

"
w � w0

l

#

Where � = �1 since the utilities of both agents move in opposite directions. Note that the bottom row

(derivative wrt w. yields the trivial solution, l = l. However, the first row (derivative wrt to l) implies that

for a bargaining solution to be e�cient, we must have f 0(l⇤) = w0 where whereby the marginal productivity

of labour equals the marginal benefits of unemployment. Note that l⇤ is the optimal labour supply solution
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of the bargaining problem. However, given that we impose the additional condition that f 0(L) > w0 and

knowing that l 2 [0, L] and that f(·) is strictly concave, arrive at a corner solution, stating that f 0(l) = w0

8l 2 [0, L]. Obviously, the l maximizing the above is L giving us f(L) = w0L.

Nash Bargaining Solution

In order to compute the NBS for the wage and knowing that l

⇤ = L is the optimal labour supply, we

construct the following Nash product3

w

N 2 argmax
w

[f(L)� w(L))] · [wL� w0L] (4)

Which gives us the following first-order condition

@w = 0 :
@

@w

⇥
f(L)Lw � f(L)Lw0 � L

2
w

2 + L

2
w0w

⇤
= 0

f(L)L� 2L2
w + w0L

2 = 0

f(L)� 2LwN + w0L = 0

Thus, the Nash bargaining solution is given by

w

N =

f(L)

L

+ w0

2
(5)

Extra: Note that this solution can also be obtained graphically via the axiomatic approach of Nash.

3Recall that the threat points have to be incorporated
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The co-ordinate corresponding to the NBS can be computed via the intersection of the two lines

R� w0L = �R+ f [f 0�1(w0)] + w0 · (L� f

0�1(w0)) ) R =
f [f 0�1(w0)]

2
� w0f

0�1(w0)

2
+ w0L

Substituting in R = wl + w0(L� l) and using the fact that l = f

0�1(w0)

wf

0�1(w0) +⇠⇠⇠
woL� w0f

0�1(w0) =
f [f 0�1(w0)]

2
� w0f

0�1(w0)

2
+���
w0L

w

N

f

0�1(w0) =
f [f 0�1(w0)]� w0f

0�1(w0) + 2w0f
0�1(w0)

2

w

N =
f [f 0�1(w0)]

2f 0�1(w0)
+

w0f
0�1(w0)

2f 0�1(w0)

Incorporating the corner solution f

0(L) = w0 , L = f

0�1(w0)

w

N =

f(L)

L

+ w0

2
(6)

Kalai-Smorodinsky Solution

The KSsolution is characterized by equal proportional concessions of both parties from their respective

maximally attainable utility levels. More precisely, for a given bargaining problem (U, u) define the utopia

point u? = (u?

F

, u

?

W

) by

u

?

i

= max{u
i

|u 2 U, u

j

� d

j

forj 6= i} i = F,W. (7)

The first step, then is to find the highest attainable utility of each player. As before, we incorporate the

corner solution l = L

⇡

max = f(L)� w0L

R

max = f(L)

The first equation is obvious; at full employment, a firm would maximize it’s profit setting the wage equal

to the reservation wage (setting a lower wage however, would drive workers to the outside option). The

second equation can be interpreted as; the highest wage a worker can demand such that the firm does not

make a negative profits. That is, w̄|f(L) = wL ) w̄ =
f(L)

L

. The KS solution is then computed by setting

the proportion of agents’ utilities equal to the proportion of their maximum attainable utilities

⇡(w)� 0

R(w)� w0L
=

⇡

max � 0

R

max � w0L

f(L)� wL

wL� w0L
=

f(L)� w0L

f(L)� w0L

f(L)� wL

wL� w0L
= 1

f(L)� wL = wL� w0L
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Which, after solving for w = w

KS , gives us

w

KS =

f(L)

L

+ w0

2
(8)

Which is the same as the Nash Bargaining solution. Thus, firms and workers are indi↵erent between each

bargaining solution as they obtain the same wage in each case.

If there was perfect competition, what allocation or allocations of profits would be equilib-

rium ones?

Taking wages as given, agents in perfect competition will individually choose the labour demand (for the

firm) and labour supply (for the worker) that maximizes their respective utilities

Firm

max
l

⇡ = f(l)� w(l)

FOC: @
l

= f

0(l)� w = 0

Value function: ⇡⇤ = f(l)� f

0(l)l

Thus, the amount of labour demanded by the firm is lD = f

0�1(w).

Workers

max
l

R = wl + w0(L� l)

FOC: @
l

= w � w0 = 0

Due to the corner solution given above, we define the labour supply as

l

S =

8
>>><

>>>:

L if w > w0

[0, L] if w = w0

0 if w < w0

Knowing that w > w0, we impose market clearing to compute the equilibrium wage

L = f

0�1(w?)

w

⇤ = f

0�1(L)
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Q4 Prove that a bargaining solution s is independent of irrelevant strategies if, and only if,

for any two bargaining problems (U,u) and (U0
,u

0) such that

(1) u = u

0 and

(2) U ⇢ U

0

it holds that

(1’) either S(U0
,u

0) = S(U,u)

(2’) or S(U0
,u

0) 2 U

0 \U

C.

Proof. Since this is an , proof, we need to prove each direction

): Suppose that a bargaining solution, s(U, u) exists and satisfies properties (1) and (2) above4. In order

to prove that this implies either (1’) or (2’), we look at two cases for S(U 0
, u

0)

1. s(U 0
, u

0) 2 U

This is shown graphically in the left figure below. Since by definition s(U 0
, u

0) 2 U

0, inclusion in U requires

that there be one point where U intersects U

0. This point defines the bargaining solutions for both sets

and, given that this comprises one point, we must have that S(U0
,u

0) = S(U,u).

2. s(U 0
, u

0) 62 U

In this case, the two sets do not intersect at a point corresponding to the NBS. The right figure below

shows that there exist a continuum of solutions under this condition. Since s(U 0
, u

0) 62 U

C or U , the only

feasible subset is defined by U

0 \ U

C and thus, S(U0
,u

0) 2 U

0 \U

C.

(
The inverse direction follows naturally from the previous argument. Depending on how the smaller set is

positioned relative to the larger one ,we either have have a unique NBS for both sets (1’) or an indeterminacy.

Thus, IIA requires that we assume that s(U 0
, u

0) 2 U so as to ensure that the NBS does not change when

removing irrelevant alternatives from the bargaining set.

4We make no assumptions regarding symmetry or e�ciency
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Q5 Prove that the bargaining solution

s(U, ū) = argmax
uu2U

(u1 � u1)(u2 � u2) (9)

for all bargaining problem (U,u), is symmetric, e�cient, and independent of irrelevant strate-

gies.

Proof. The proof carried out in (Nash, 1950) shows that given the four axioms given above, there exists

one bargaining solution that satisfies this which occurs as a result of maximizing the product of the players’

gains in utility over the disagreement outcome.5

It is worthwile to note that since U is compact by definition and the objective function of (9) is continuous,

there exists an optimal solution to (9). Moreover, given that the objective function is strictly quasi-concave,

the optimal solution is unique. In order to prove that the Nash bargaining solution s

N (U, u), is the unique

bargaining solution that satisfies the four axioms, we first prove that the NBS satisfies the four axioms

then show that if an arbitrary BS satisfies the four axioms, it must be equal to s

N (U, u).

Step 1

1. EFF: This follows immediately from the fact that the objective function in (9) is increasing in u1 and u2.

2. SYMM Assuming that u1 = u2, let u

? = (u?

1, u
?

2) = s

N (U, u). Then the permutation (u?

2, u
?

1) is also

an optimal solution of (9). Given that this solution is unique by definition, it must be that (u?

1 = u

?

1) and

hence s

N

1 (U, u) = s

N

2 (U, u) thereby satisfying the symmetry property.

3. IIA Assuming a set U 0 ✓ U . From the first two properties and given the definition of U 0 vis-‘a-vis the

superset U, it is apparent that sN
i

(U, u) ⌫
i

s

N

i

(U 0
, u) 8i. As in Q4, if we impose that sN (U, u) 2 U

0. Thus,

by definition of (9), sN (U, u) is optimal in U

0 and given the uniqueness of the solution, it must be that

s

N (U, u) = s

N (U 0
, u).

4. INV This axiom states that an a�ne transformation maintaining the same preference ordering should

not alter the bargaining outcome. That is, suppose the bargaining problem defined by (U, u) yields the

NBS s

N (U, u). Then, given the alternative BS (U 0
, u

0) for some ↵ > 0, �:

U

0 = {(↵1u1 + �1,↵2u2 + �2)|(u1, u2) 2 U}

u

0 = (↵1u1 + �1,↵2u2 + �2)

Then, f
i

(U 0
, u

0) = ↵

i

f

i

(U, u) + �

i

8i. In order to prove that the s

N (U, u) satisfies INV, we apply the

transformations directly to (9) to show that that sN (U, u0) is an optimal solution of the Nash product

5Note: The following exposition closely follows the proof given in the notes of the course ‘Game Theory with Engineering

Applications’ at MIT (Course 6.254) - Lecture 14
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(u1 � u1)(u2 � u2) = ↵1↵2(u1 � u1)(u2 � u2) = (↵1u1 � ↵1u1)(↵2u2 � ↵2u2)

= (↵1u1 + �1 � ↵1u1 � �1)(↵2u2 + �2 + ↵2u2 � �2)

= [↵1u1 + �1 � (↵1u1 + �1)] · [↵2u2 + �2 � (↵2u2 + �2)]

= [u0
1 � u

0
1] · [u0

2 � u

0
2]

Given the above computations, it is apparent that s(U, u) maximizes the Nash product if and only if

s(U 0
, u

0) maximizes the NP over U 0.

Step 2

Let s(U, u) be an arbitrary bargaining solution satisfying the four axioms. This part of the proof requires

us to show that s(U, u) = s

N (U, u).

To simplify, let sN (U, u) = z. Now, let us define a bargaining problem (U 0
, u

0) that is obtained from (U 0
, u

0)

via the transformation (i.e., the specification of ↵ and �) that map the threat point to the origin and the

solution, sN (U, u) to the co-ordinate (1/2, 1/2). Thus, we have

(u0
1, u

0
2) = (↵1u1 + �1,↵2u2 + �2) = (0, 0)

(u0
1, u

0
2) = (↵1u1 + �1,↵2u2 + �2) = (1/2, 1/2)

Since s is INV by construction and s

N is INV from the 1st part of the proof, we have that

s(U, u) = s

N (U, u) , s(U 0
, 0) = s

N (U 0
, 0)

Note that we are trying to prove the LHS of the above equation however, given the i↵ relation, it su�ces

to show that s(U 0
, 0) = (u0

1, u
0
2) = (1/2, 1/2).

Note that the point (u0
1, u

0
2) 2 U

0 lies on the 2-simplex whereby (u0
1 + (u0

2 = 1, which, we claim defines the

frontier of U 0. That is, U’ is bounded which implies that there does not exist a point (u1, u2) such that

u1 + u2) > 1. Suppose, a contrario that 9 u 2 U

0 : u1 + u2) > 1. We define the following convex

combination between the two points in U

0 for � 2 (0, 1)

t = � (1/2, 1/2) + (1� �)(u1, u2)

Since U

0 is, by definition, a convex set, we have that t 2 U

0. Notice that at the NBS, sN (U 0
, 0) = (1/2, 1/2),

u1 · u2 = 1
/4. Notice that as � ! 0 in the equation above, the second term dominates the first thus, it

is possible, for � small enough, we can find (t1, t2) 2 U

0 such that t1 · t2 > 1 thereby contradicting the

optimality of t1, t2.
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Having established the boundedness of U 0, we can define a rectangular set U 00 s.t U 00 ◆ U

0 that is symmetric

w.r.t the line u1 = u2 and whose north-east frontier is the simplex defined above. As a result, the NBS

point sN (U 0
, 0) = (1/2, 1/2) is on the boundary of U 00.

By 1. EFF and 2. SYMM we can 1. place s(U 00
, 0) on the frontier of U 00 and 2. place s(U 00

, 0) on the

45�-line which gives the unique point, s(U 00
, 0) = (1/2, 1/2). Finally, using IIA, given the properties already

defined, we have that s(U 0
, 0) = s(U 00

, 0) (1/2, 1/2) ) s(U 0
, 0) = (1/2, 1/2). This concludes the proof.
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